Info: Read More
  • 中药标准品生产商,产品定制服务
  • 1,2,3,6-四-O-没食子酰-β-D-葡萄糖


    产品编号 CFN00447
    CAS编号 79886-50-3
    分子式 = 分子量 C34H28O22 = 788.57
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Phenols
    植物来源 The peels of Punica granatum L.
    产品名称 产品编号 CAS编号 包装 QQ客服
    1,2,3,6-四-O-没食子酰-β-D-葡萄糖 CFN00447 79886-50-3 1mg QQ客服:1457312923
    1,2,3,6-四-O-没食子酰-β-D-葡萄糖 CFN00447 79886-50-3 5mg QQ客服:1457312923
    1,2,3,6-四-O-没食子酰-β-D-葡萄糖 CFN00447 79886-50-3 10mg QQ客服:1457312923
    1,2,3,6-四-O-没食子酰-β-D-葡萄糖 CFN00447 79886-50-3 20mg QQ客服:1457312923
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: 或

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.

    PMID: 30417089
  • Universidade do Porto (Portugal)
  • Universidade Federal de Pernambuco (UFPE) (Brazil)
  • Osmania University (India)
  • The Australian National University (Australia)
  • University of Toronto (Canada)
  • Universidad Miguel Hernández (Spain)
  • University of Toulouse (France)
  • Universiti Sains Malaysia (Malaysia)
  • Hamdard University (India)
  • Washington State University (USA)
  • Max Rubner-Institut (MRI) (Germany)
  • University of Leipzig (Germany)
  • Universidad de Buenos Aires (Argentina)
  • University of Otago (New Zealand)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Evid Based Complement Alternat Med.2018, 2018:4259603
  • J. Pharm. Res. Int.2022, 34(58): pp.1-14.
  • Journal of Molecular Liquids2021, 334:116014.
  • J Pharmacol Sci.2021, 147(2):184-191.
  • PLoS One.2020, 15(2):e0220084.
  • Neurochem Int.2018, 121:114-124
  • Antioxidants (Basel).2020, 9(7):581.
  • Evid Based Complement Alternat Med.2021, 8855980.
  • Auburn University2015, 1-58
  • Plant Foods Hum Nutr.2020, 10.1007
  • J Sci Food Agric.2022, 102(4):1628-1639
  • Industrial Crops and Products2017, 95:286-295
  • The Malaysian journal of pathology2019, 41(3):243-251
  • LWT-Food Science and Technology2017, 75:488-496
  • Molecules.2018, 23(10):E2638
  • J Ethnopharmacol.2022, 291:115159.
  • Molecules.2021, 26(19):6032.
  • Am J Chin Med.2015, 30:1-22
  • Mol Biol Rep.2022, doi: 10.1007
  • Chemistry of plant raw materials2021, 1:pp 139-150
  • Asian J Beauty Cosmetol2020, 18(3): 265-272.
  • Int Immunopharmacol.2021, 101(Pt A):108181.
  • Plant Cell, Tissue and Organ Culture (PCTOC)2020, 143, 45-60(2020)
  • ...
  • 生物活性
    Description: 1,2,3,6-Tetragalloylglucose has antioxidative activity, it also shows the most potent anticomplement activity (IC(50), 34 microM).
    Targets: LDL
    In vitro:
    Biosci Biotechnol Biochem. 2008 Aug;72(8):2158-63.
    Antioxidative activities of galloyl glucopyranosides from the stem-bark of Juglans mandshurica.[Pubmed: 18685223]

    Two phenolics, 1,2,6-trigalloylglucose (1) and 1,2,3,6-Tetragalloylglucose (2), isolated from the stem-bark of Juglans mandshurica were evaluated for their antioxidative activities. The results showed that compounds 1 and 1,2,3,6-Tetragalloylglucose exhibited strong scavenging activities against 1,1'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzenthiazoline-6-sulphonic) acid (ABTS(*+)), and superoxide radicals (O(2)(*-)), and also had a significant inhibitory effect on lipid peroxidation and low-density lipoprotein (LDL) oxidation.
    The strong superoxide radical scavenging of 1 and 1,2,3,6-Tetragalloylglucose resulted from the potential competitive inhibition with xanthine at the active site of xanthine oxidase (OX). In addition, compounds 1 and 1,2,3,6-Tetragalloylglucose displayed significant lipoxygenase inhibitory activity, the mode of inhibition also being identified as competitive. In comparison, the antioxidative activities of compounds 1 and 1,2,3,6-Tetragalloylglucose, together with gallic acid, indicated that the number of galloyl moieties could play an important role in the antioxidative activity.
    Biol Pharm Bull. 2003 Jul;26(7):1042-4.
    Anti-complement activity of constituents from the stem-bark of Juglans mandshurica.[Pubmed: 12843637 ]

    Four known flavonoids and two galloyl glucoses isolated from the stem-bark of Juglans mandshurica (Juglandaceae), namely taxifolin (1), afzelin (2), quercitrin (3), myricitrin (4), 1,2,6-trigalloylglucose (5), and 1,2,3,6-Tetragalloylglucose (6), were evaluated for their anti-complement activity against complement system. Afzelin (2) and quercitrin (3) showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 258 and 440 microM. 1,2,6-Trigalloylglucose (5) and 1,2,3,6-Tetragalloylglucose (6) exhibited anti-complement activity with IC(50) values of 136 and 34 microM. In terms of the evaluation of the structure-activity relationship of 3,5,7-trihydroxyflavone, compounds 2, 3, and 4 were hydrolyzed with naringinase to give kaempferol (2a), quercetin (3a), and myricetin (4a) as their aglycones, and these were also tested for their anti-complement activity. Of the three aglycones, kaempferol (2a) exhibited weak anti-complement activity with an IC(50) value of 730 microM, while quercetin (3a) and myricetin (4a) were inactive in this assay system.
    Among the compounds tested, 1,2,3,6-Tetragalloylglucose (6) showed the most potent anticomplement activity (IC(50), 34 microM).
    Hum Exp Toxicol. 2011 Sep;30(9):1415-9.
    Inhibition effects of the classical pathway complement of isolated compounds from Quercus glauca.[Pubmed: 21078772]
    Species of the Quercus species is an evergreen broadleaf tree found not only in Korea but also in China, Taiwan, and Japan. Quercus species is the most commonly occurring plant among the 50 native species of the family Fagaceae in Korea, China, and Taiwan. Quercus species have been used for diarrhea, dysentery, dermatitis, and hemorrhagia in Korean folk medicine. The present study evaluated the anticomplement effect of constituents from Quercus species (Fagaceae) in classical pathway complement system.
    We have evaluated leaves of five species of the Quercus genus with regard to its anticomplement activity and have identified its active principles following activity-guided isolation. Bioactivity-guided fractionation of the 80% methanol extracts of the stem barks of Quercus glauca Thunberg has led to the isolation of galloyl derivatives, displaying high anticomplement activity. Four galloyl derivatives isolated from the leaves of Q. glauca, namely 6'-O-galloyl salidroside (1), methyl gallate (2), 1,2,3,6-tetragalloylglucose (3), and 1,2,6-trigalloylglucose (4). 1, 2, 3 and 4 showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 224 μM, 362.4 μM, 32.3 μM, and 138.3 μM.
    Among the compounds tested, 3 showed the most potent anticomplement activity (IC(50), 32.3 μM). This is the first report of the isolation and anticomplement activity from Q. glauca.
    In vivo:
    Food Chem Toxicol . 2018 Oct;120:651-661.
    Identification and characterization of in vitro inhibitors against UDP-glucuronosyltransferase 1A1 in uva-ursi extracts and evaluation of in vivo uva-ursi-drug interactions[Pubmed: 30075316]
    Abstract Uva-ursi leaf is widely used to treat symptoms of lower urinary tract infections. Here, we evaluated the in vitro inhibitory effects of uva-ursi extracts on 10 major human UDP-glucuronosyltransferases (UGT) isoforms. Of the 10 tested UGT isoforms, uva-ursi extracts exerted the strongest inhibitory effect on UGT1A1-mediated β-estradiol 3-glucuronidation with the lowest IC50 value of 8.45 ± 1.56 μg/mL. To identify the components of uva-ursi extracts showing strong inhibitory effects against UGT1A1, the inhibitory effects of nine major constituents of the extracts were assessed. Among the tested compounds, gallotannin exerted the most potent inhibition on UGT1A1, followed by 1,2,3,6-tetragalloylglucose; both demonstrated competitive inhibition, with Ki values of 1.68 ± 0.150 μM and 3.55 ± 0.418 μM. We found that gallotannin and 1,2,3,6-tetragalloylglucose also inhibited another UGT1A1-specific biotransformation, SN-38-glucuronidation, showing the same order of inhibition. Thus, in vitro UGT1A1 inhibitory potentials of uva-ursi extracts might primarily result from the inhibitory activities of gallotannin and 1,2,3,6-tetragalloylglucose present in the extracts. However, in rats, co-administration with uva-ursi extracts did not alter the in vivo marker for UGT1A1 activity, expressed as the molar ratio of AUCSN-38 glucuronide/AUCSN-38, because plasma concentrations of gallotannin and 1,2,3,6-tetragalloylglucose may be too low to inhibit the UGT1A1-mediated metabolism of SN-38 in vivo. The poor oral absorption of gallotannin and 1,2,3,6-tetragalloylglucose in uva-ursi extracts might cause the poor in vitro-in vivo correlation. These findings will be helpful for the safe and effective use of uva-ursi extracts in clinical practice. Keywords: 1,2,3,6-Tetragalloylglucose; Gallotannin; In vitro UGT1A1 inhibition; In vivo herb‒drug interaction; Uva-ursi extract.
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 1.2681 mL 6.3406 mL 12.6812 mL 25.3624 mL 31.703 mL
    5 mM 0.2536 mL 1.2681 mL 2.5362 mL 5.0725 mL 6.3406 mL
    10 mM 0.1268 mL 0.6341 mL 1.2681 mL 2.5362 mL 3.1703 mL
    50 mM 0.0254 mL 0.1268 mL 0.2536 mL 0.5072 mL 0.6341 mL
    100 mM 0.0127 mL 0.0634 mL 0.1268 mL 0.2536 mL 0.317 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    Pinocembrin 7-O-(4'',6''-hexahydroxydiphenoyl)-beta-D-glucose; Pinocembrin 7-O-(4'',6''-hexahydroxydiphenoyl)-beta-D-glucose CFN95462 1825287-22-6 C35H28O17 = 720.6 10mg QQ客服:2056216494
    Pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-β-D-glucose; Pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-beta-D-glucose CFN90881 205370-59-8 C42H32O21 = 872.7 20mg QQ客服:1413575084
    2,6-Dihydroxyacetophenone-4-O-[4',6'-(S)-hexahydroxydiphenoyl]-beta-D-glucose; 2,6-Dihydroxyacetophenone-4-O-[4',6'-(S)-hexahydroxydiphenoyl]-beta-D-glucose CFN95470 1781226-44-5 C28H24O17 = 632.5 5mg QQ客服:2159513211
    老鹳草素; Geraniin CFN90256 60976-49-0 C41H28O27 = 952.64 20mg QQ客服:2159513211
    叶下珠鞣质C; Phyllanthusiin C CFN95260 142674-52-0 C40H30O26 = 926.7 5mg QQ客服:215959384
    诃子鞣酸; Chebulagic acid CFN92295 23094-71-5 C41H30O27 = 954.7 5mg QQ客服:2056216494
    诃子林鞣酸; Chebulinic acid CFN92296 18942-26-2 C41H32O27 = 956.7 20mg QQ客服:2056216494
    新诃黎勒鞣花酸甲酯; Methyl neochebulinate CFN95201 1236310-34-1 C42H36O28 = 988.7 5mg QQ客服:2056216494
    月见草素 B; Oenothein B CFN91651 104987-36-2 C68H48O44 = 1569.1 5mg QQ客服:3257982914
    1,2,3,6-四-O-没食子酰-β-D-葡萄糖; 1,2,3,6-Tetragalloylglucose CFN00447 79886-50-3 C34H28O22 = 788.57 10mg QQ客服:1413575084





    在线QQ: 1413575084


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产