Info: Read More
  • 中药标准品生产商,产品定制服务
  • 2,5-二羟基苯甲醛

    2,5-Dihydroxybenzaldehyde

    2,5-二羟基苯甲醛
    产品编号 CFN99307
    CAS编号 1194-98-5
    分子式 = 分子量 C7H6O3 = 138.1
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Phenols
    植物来源 The heartwoods of Pseudolarix amabilis.
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    2,5-二羟基苯甲醛 CFN99307 1194-98-5 10mg QQ客服:215959384
    2,5-二羟基苯甲醛 CFN99307 1194-98-5 20mg QQ客服:215959384
    2,5-二羟基苯甲醛 CFN99307 1194-98-5 50mg QQ客服:215959384
    2,5-二羟基苯甲醛 CFN99307 1194-98-5 100mg QQ客服:215959384
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • The Institute of Cancer Research (United Kingdom)
  • Medizinische Universit?t Wien (Austria)
  • National Chung Hsing University (Taiwan)
  • Ateneo de Manila University (Philippines)
  • Harvard University (USA)
  • Leibniz Institute of Plant Biochemistry (Germany)
  • University of Melbourne (Australia)
  • National Cancer Institute (USA)
  • Universiti Kebangsaan Malaysia (Malaysia)
  • University of Canterbury (New Zealand)
  • Sanford Burnham Prebys Medical Discovery Institute (USA)
  • Medical University of Gdansk (Poland)
  • Warszawski Uniwersytet Medyczny (Poland)
  • University of Wuerzburg (Germany)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Chem Biol Interact.2016, 258:59-68
  • Plant Growth Regulation2020, 90(2):383-392
  • J Appl Pharm Sci.2022, 12(04):044-053
  • Sci Rep.2017, 7:46299
  • Environ Toxicol.2022, 37(3):514-526.
  • The Japan Society for Analy. Chem.2017, 66(8):613-617
  • Antioxidants (Basel).2020, 9(6):526.
  • Planta Medica International2022, 9(01):e108-e115.
  • Food Sci Biotechnol.2023, 32(9):1215-1223.
  • Food Funct.2020, 11(2):1322-1333.
  • J Control Release.2021, 336:159-168.
  • Front Plant Sci.2020, 11:630.
  • Appl. Sci.2022, 12(4), 2032.
  • Chemistry of Plant Materials.2016, 33-46
  • Journal of Functional Foods2022, 99: 105331.
  • Phytomedicine.2018, 41:62-66
  • J Ethnopharmacol.2022, 291:115159.
  • Phytother Res.2019, 33(3):676-689
  • Phytochem Anal.2013, 24(5):493-503
  • University of Limpopo2016, 1777
  • Front Pharmacol.2017, 8:673
  • Acta Physiologiae Plantarum2015, 37:1736
  • Korean J. Food Preserv. 2021, 28(6):846-856.
  • ...
  • 生物活性
    Description: 2,5-Dihydroxybenzaldehyde has antioxidant activity.
    Targets: Antifection
    In vitro:
    Molecules. 2014 Jun 6;19(6):7497-515.
    Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers.[Pubmed: 24914896]
    Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms.
    METHODS AND RESULTS:
    The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin). Surface pressure-area (π-A) and surface potential-area (Δψ-A) isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial -lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers.
    CONCLUSIONS:
    The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.
    Langmuir. 2012 Oct 2;28(39):14055-64.
    Diffusion-free mediator based miniature biofuel cell anode fabricated on a carbon-MEMS electrode.[Pubmed: 22946444 ]
    We report on the functionalization of a micropatterned carbon electrode fabricated using the carbon-MEMS process for its use as a miniature diffusion-free glucose oxidase anode.
    METHODS AND RESULTS:
    Carbon-MEMS based electrodes offer precise manufacturing control on both the micro- and nanoscale and possess higher electron conductivity than redox hydrogels. However, the process involves pyrolysis in a reducing environment that renders the electrode surface less reactive and introduction of a high density of functional groups becomes challenging. Our functionalization strategy involves the electrochemical oxidation of amine linkers onto the electrode. This strategy works well with both aliphatic and aryl linkers and uses stable compounds. The anode is designed to operate through mediated electron transfer between 2,5-dihydroxybenzaldehyde (DHB) based redox mediator and glucose oxidase enzyme. The electrode was first functionalized with ethylene diamine (EDA) to serve as a linker for the redox mediator. The redox mediator was then grafted through reductive amination, and attachment was confirmed through cyclic voltammetry. The enzyme immobilization was carried out through either adsorption or attachment, and their efficiency was compared. For enzyme attachment, the DHB attached electrode was functionalized again through electro-oxidation of aminobenzoic acid (ABA) linker. The ABA functionalization resulted in reduction of the DHB redox current, perhaps due to increased steric hindrance on the electrode surface, but the mediator function was preserved. Enzyme attachment was then carried out through a coupling reaction between the free carboxyl group on the ABA linker and the amine side chains on the enzyme. The enzyme incubation for both adsorption and attachment was done either through a dry spotting method or wet spotting method. The dry spotting method calls for the evaporation of enzyme droplet to form a thin film before sealing the electrode environment, to increase the effective concentration of the enzyme on the electrode surface during incubation. The electrodes were finally protected with a gelatin based hydrogel film. The anode half-cell was tested using cyclic voltammetry in deoxygenated phosphate buffer saline solution pH 7.4 to minimize oxygen interference and to simulate the pH environment of the body. The electrodes that yielded the highest anodic current were prepared by enzyme attachment method with dry spotting incubation.
    CONCLUSIONS:
    A polarization response was generated for this anodic half-cell and exhibits operation close to maximum efficiency that is limited by the mass transport of glucose to the electrode.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 7.2411 mL 36.2056 mL 72.4113 mL 144.8226 mL 181.0282 mL
    5 mM 1.4482 mL 7.2411 mL 14.4823 mL 28.9645 mL 36.2056 mL
    10 mM 0.7241 mL 3.6206 mL 7.2411 mL 14.4823 mL 18.1028 mL
    50 mM 0.1448 mL 0.7241 mL 1.4482 mL 2.8965 mL 3.6206 mL
    100 mM 0.0724 mL 0.3621 mL 0.7241 mL 1.4482 mL 1.8103 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    4-甲氧基苯甲醛; 对甲氧基苯甲醛; 大茴香醛; Anisic aldehyde CFN90476 123-11-5 C8H8O2 = 136.14 20mg QQ客服:2159513211
    豆腐果苷; 豆腐果素; Helicid CFN99957 80154-34-3 C13H16O7 = 284.26 20mg QQ客服:2056216494
    原儿茶醛; 原二茶醛; 茶酚甲醛; 茶醛; 3,4-二羟基苯甲醛; 3,4-Dihydroxybenzaldehyde CFN99450 139-85-5 C7H6O3 = 138.1 20mg QQ客服:2056216494
    香兰素; 香草醛; 3-甲氧基-4-羟基苯甲醛; Vanillin CFN90463 121-33-5 C8H8O3 = 152.14 20mg QQ客服:1413575084
    异香兰素; 3-羟基-4-甲氧基苯甲醛; 异香草醛; Isovanillin CFN90358 621-59-0 C8H8O3 = 152.15 20mg QQ客服:3257982914
    藜芦醛; 3,4-二甲氧基苯甲醛; Veratraldehyde CFN99315 120-14-9 C9H10O3 = 166.2 20mg QQ客服:1457312923
    3,5-二羟基苯甲醛; 3,5-Dihydroxybenzaldehyde CFN90111 26153-38-8 C7H6O3 = 138.12 5mg QQ客服:2159513211
    2,5-二羟基苯甲醛; 2,5-Dihydroxybenzaldehyde CFN99307 1194-98-5 C7H6O3 = 138.1 20mg QQ客服:2159513211
    2,4,5-三甲氧基苯甲醛; 2,4,5-Trimethoxybenzaldehyde CFN98680 4460-86-0 C10H12O4 = 196.2 20mg QQ客服:215959384
    2-苯基乙醛; Phenylacetaldehyde CFN93158 122-78-1 C8H8O = 120.2 20mg QQ客服:1457312923

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产