Info: Read More
  • 中药标准品生产商,产品定制服务
  • 正十八烷

    n-Octadecane

    正十八烷
    产品编号 CFN91673
    CAS编号 593-45-3
    分子式 = 分子量 C18H38 = 254.49
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Miscellaneous
    植物来源
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    正十八烷 CFN91673 593-45-3 1mg QQ客服:2056216494
    正十八烷 CFN91673 593-45-3 5mg QQ客服:2056216494
    正十八烷 CFN91673 593-45-3 10mg QQ客服:2056216494
    正十八烷 CFN91673 593-45-3 20mg QQ客服:2056216494
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Washington State University (USA)
  • Georgia Institute of Technology (USA)
  • University of Indonesia (Indonesia)
  • Wageningen University (Netherlands)
  • Molecular Biology Institute of Barcelona (IBMB)-CSIC (Spain)
  • Medical University of Gdansk (Poland)
  • University of the Basque Country (Spain)
  • Korea Intitute of Science and Technology (KIST) (Korea)
  • Gyeongsang National University (Korea)
  • Uniwersytet Gdański (Poland)
  • Kyushu University (Japan)
  • Universiti Kebangsaan Malaysia (Malaysia)
  • University of British Columbia (Canada)
  • University of Madras (India)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • LWT2020, 124:109163
  • Food Chem.2019, 276:768-775
  • J Agric Food Chem.2020, 68(43):12164-12172.
  • Journal of Molecular Liquids2022, 364:120062.
  • Integr Med Res.2017, 6(4):395-403
  • Front Microbiol.2021, 12:736780.
  • Natural Product Communications2020, doi: 10.1177.
  • J Cell Mol Med.2023, 27(11):1592-1602.
  • Molecules.2020, 25(15):3353.
  • Journal of Food Hygiene and Safety2019, 34(5):413-420
  • Int J Mol Sci.2018, 19(2)
  • Nutrients.2019, 11(4):E936
  • Evid Based Complement Alternat Med.2016, 2016:4357656
  • Food Research International2020, 108987
  • J Biochem Mol Toxicol.2017, 31(9)
  • Evid Based Complement Alternat Med.2020, 2020:8582318.
  • Sci Adv.2018, 4(10)
  • Front Pharmacol.2021, 12:690113.
  • Food Bioscience2022, 50:102187.
  • Bull. Pharm. Sci., Assiut University2020, 43(2):149-155.
  • Antioxidants (Basel).2021, 10(1):112.
  • Plant Biotechnology Reports 2021, 15:117-124.
  • Molecular & Cellular Toxicology2017, 13(3):271-278
  • ...
  • 生物活性
    Description: Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material.
    In vitro:
    Appl Environ Microbiol . 1992 Oct;58(10):3276-3282.
    Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant)[Pubmed: 1444363]
    A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.
    Polymers (Basel) . 2020 Sep 28;12(10):2226.
    Bifunctional Microcapsules with n-Octadecane/Thyme Oil Core and Polyurea Shell for High-Efficiency Thermal Energy Storage and Antibiosis[Pubmed: 32998274]
    A new kind of bifunctional microcapsule containing a n-octadecane (OD) and thyme oil (TO) core based on polyurea shell designed for thermal energy storage and antibiosis was prepared successfully through interfacial polymerization. The scanning electron microscopic investigations reveal that the obtained composite microcapsules present the regular spherical morphology and the transmission electron microscopic observations confirm the clear core-shell structure. Morphological and chemical structure analyses prove the successful synthesis of bifunctional microcapsules. Thermogravimetric analysis indicates that the polyurea shell can protect the composite cores effectively. Differential scanning calorimetry examination shows that the bifunctional microcapsules can maintain high thermal storage capacity and the encapsulation efficiency of OD increases with the increase in TO. The supercooling crystallization can be notably suppressed by adding 7 wt.% of n-octadecanol. A study on the release behavior of TO from the bifunctional microcapsules reveals that the Higuchi kinetic model could better fit the TO release profile. The antibacterial results demonstrate that the bifunctional microcapsules can effectively inhibit the growth of Staphylococcus aureus and the inhibition rate can reach as high as 99.9% when the mass concentration of microcapsules is over 3 wt.%.
    J Microbiol . 2013 Dec;51(6):791-799
    Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17[Pubmed: 24385357]
    The trans-membrane transport of hydrocarbons is an important and complex aspect of the process of biodegradation of hydrocarbons by microorganisms. The mechanism of transport of (14)C n-octadecane by Pseudomonas sp. DG17, an alkane-degrading bacterium, was studied by the addition of ATP inhibitors and different substrate concentrations. When the concentration of n-octadecane was higher than 4.54 μmol/L, the transport of (14)C n-octadecane was driven by a facilitated passive mechanism following the intra/extra substrate concentration gradient. However, when the cells were grown with a low concentration of the substrate, the cellular accumulation of n-octadecane, an energy-dependent process, was dramatically decreased by the presence of ATP inhibitors, and n-octadecane accumulation continually increased against its concentration gradient. Furthermore, the presence of non-labeled alkanes blocked (14)C n-octadecane transport only in the induced cells, and the trans-membrane transport of n-octadecane was specific with an apparent dissociation constant K t of 11.27 μmol/L and V max of 0.96 μmol/min/mg protein. The results indicated that the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17 was related to the substrate concentration and ATP.
    PLoS One . 2017 Jun 29;12(6):e0179842.
    Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane[Pubmed: 28662172]
    While many data are available on genes encoding proteins for degradation of hydrocarbons in bacteria, the impact of alkane on transporter protein expression is unclear. Pseudomonas aeruginosa SJTD-1 is a strain that can consume medium- and long-chain n-alkanes. In order to study the proteins involved in n-octadecane uptake, we use iTRAQ and label free comparative proteomics analysis to identify the proteins of alkane uptake in response to n-octadecane (C18) comparing with n-hexadecane (C16) in P. aeruginosa SJTD-1. A total of 1102 and 1249 proteins were identified by iTRAQ-based and label free quantitative methodologies, respectively. By application of 1.5 (iTRAQ) or 2-fold (label free) for upregulated and 0.65 (iTRAQ) or 0.5-fold (label free) for downregulated cutoff values, 91 and 99 proteins were found to be differentially expressed comparing SJTD-1 cultivated on C18 with C16 respectively. There are six proteins with the common differential expression by iTRAQ and label free-based methods. Results of bioinformational analysis suggested the involvement of bacterial chemotaxis in responds to C18. Additionally, quantitative reverse transcriptase PCR (qRT-PCR) results confirmed C18-induced change in levels of FleQ, FliC, NirS, FadL and FadD proteins and the role of the proteins in n-octadecane uptake was further discussed in P. aeruginosa. In conclusion, results of the present study provided information about possible target-related proteins of bacterial chemotaxis, swimming performance, alkane transport to stimulus of n-ctadecane rather than n-hexadecane in P. aeruginosa SJTD-1.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.9294 mL 19.6471 mL 39.2943 mL 78.5885 mL 98.2357 mL
    5 mM 0.7859 mL 3.9294 mL 7.8589 mL 15.7177 mL 19.6471 mL
    10 mM 0.3929 mL 1.9647 mL 3.9294 mL 7.8589 mL 9.8236 mL
    50 mM 0.0786 mL 0.3929 mL 0.7859 mL 1.5718 mL 1.9647 mL
    100 mM 0.0393 mL 0.1965 mL 0.3929 mL 0.7859 mL 0.9824 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    7-羟基千金子二萜醇; 7-beta-Hydroxylathyrol CFN92488 34208-98-5 C20H30O5 = 350.5 20mg QQ客服:2159513211
    反式-可母尼醇,湿地松醇; Elliotinol CFN99033 10178-31-1 C20H32O = 288.5 5mg QQ客服:2159513211
    柘树二氢黄酮B; Cudraflavanone B CFN92532 597542-74-0 C20H20O6 = 356.4 5mg QQ客服:3257982914
    7-当酰倒千里光碱; 7-Angeloylretronecine CFN00324 6029-82-9 C13H19NO3 = 237.30 5mg QQ客服:2159513211

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产