Info: Read More
  • 中药标准品生产商,产品定制服务
  • Mucronulatol

    Mucronulatol

    Mucronulatol
    产品编号 CFN95386
    CAS编号 20878-98-2
    分子式 = 分子量 C17H18O5 = 302.3
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Flavonoids
    植物来源 The herbs of Lotus corniculatus L.
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    Mucronulatol CFN95386 20878-98-2 1mg QQ客服:1457312923
    Mucronulatol CFN95386 20878-98-2 5mg QQ客服:1457312923
    Mucronulatol CFN95386 20878-98-2 10mg QQ客服:1457312923
    Mucronulatol CFN95386 20878-98-2 20mg QQ客服:1457312923
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Universiti Kebangsaan Malaysia (Malaysia)
  • University of Sao Paulo (Brazil)
  • Monash University Sunway Campus (Malaysia)
  • University of Brasilia (Brazil)
  • Celltrion Chemical Research Institute (Korea)
  • Sant Gadge Baba Amravati University (India)
  • Imperial College London (United Kingdom)
  • Ain Shams University (Egypt)
  • Universidade Federal de Santa Catarina (Brazil)
  • Seoul National University (Korea)
  • Sanford Burnham Prebys Medical Discovery Institute (USA)
  • Korea Institute of Oriental Medicine (Korea)
  • Center for protein Engineering (CIP) (Belgium)
  • University of Hull (United Kingdom)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Free Radic Biol Med.2017, 112:191-199
  • CZECH MYCOLOGY2021, 73(1):1-19.
  • Pharmacogn Mag.2015, 11(43):562-6
  • Chem Biol Interact.2022, 368:110248.
  • Food Science and Human Wellness2022, 11(4):965-974
  • Genes Genomics.2020, 10.1007
  • Sci Rep.2021, 11(1):11936.
  • Pharmacia2022, 69(3): 883-890.
  • J Nat Prod.2022, 85(5):1351-1362.
  • Food Chem.2022, 373(Pt B):131364.
  • Molecules.2019, 24(17):E3127
  • J Nat Med.2020, 74(1):65-75
  • University of Limpopo2016, 1-237
  • Molecules2022, 27(9):2827.
  • FASEB J.2019, 33(8):9685-9694
  • J Food Sci Technol.2019, 56(5):2712-2720
  • Molecules.2019, 24(16):E3003
  • Appl Biochem Biotechnol.2022, s12010-022-04166-2.
  • Enzyme Microb Technol.2022, 153:109941.
  • Evid Based Complement Alternat Med.2016, 2016:4357656
  • Biomedicines.2022, 10(5):1170
  • University of Central Lancashire2017, 20472
  • Food Res Int.2017, 96:40-45
  • ...
  • 生物活性
    Description: Mucronulatol has anticancer,antiangiogenic activity. Mucronulatol exhibits markedly potent inhibition of yeast α-glucosidase.
    In vitro:
    Nat Prod Res . 2021 Dec;35(24):5879-5882.
    Exploring natural compounds for the management of non-small cell lung cancer[Pubmed: 32722994]
    A growing incidence of drug resistance and tumour proliferation in non-small cell lung cancer escalates the urge for potential lead molecules. The plant-derived natural compounds have played a pivotal role in potential therapeutic agents owing to its versatility and low toxicity over the past decades. In this study, we have executed an in-silico based screening of 1574 natural compounds against the β-catenin via an integrated pharmacophore approach. Further investigation revealed that Mucronulatol and 7,4'-dihydroxyhomoisoflavanone possess a higher Glide score (-4.748 and -3.943 kcal/mol), binding affinity (-44.763 and -41.883 kcal/mol) alongside drug-likeness property than the iCRT5. Moreover, these compounds are reported to have cytotoxicity against lung cancer cell lines with an IC50 value of 6.74 μM and 8.99 μM respectively. Furthermore, dynamic studies were employed to determine the structural stability and we hope that the lead molecules proposed in this study could effectively inhibit the β-catenin pathway associated with NSCLC.
    Bioinformation . 2015 Feb 28;11(2):73-84.
    In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases[Pubmed: 25848167]
    Angiogenesis is the formation of new blood vessels from preexisting vascular network that plays an important role in the tumor growth, invasion and metastasis. Anti-angiogenesis targeting tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2) and platelet derived growth factor receptor β (PDGFRβ) constitutes a successful target for the treatment of cancer. In this work, molecular docking studies of three bioflavanoid such as indigocarpan, mucronulatol, indigocarpan diacetate and two diterpenes namely erythroxydiol X and Y derived from Indigofera aspalathoides as PDGFRβ and VEGFR2 inhibitors were performed using computational tools. The crystal structures of two target proteins were retrieved from PDB website. Among the five compounds investigated, indigocarpan exhibited potent binding energy ΔG = -7.04 kcal/mol with VEGFR2 and ΔG = -4.82 with PDGFRβ compared to commercially available anti-angiogenic drug sorafenib (positive control). Our results strongly suggested that indigocarpan is a potent angiogenesis inhibitor as ascertained by its potential interaction with VEGFR2 and PDGFRβ. This hypothesis provides a better insight to control metastasis by blocking angiogenesis.
    J Agric Food Chem. 2010 Sep 22;58(18):9988-9993.
    Yeast alpha-glucosidase inhibition by isoflavones from plants of Leguminosae as an in vitro alternative to acarbose[Pubmed: 20734984]
    In the course of searching for new classes of α-glucosidase inhibitors originated from natural resources, 11 kinds of isoflavones, i.e., medicarpin (1), formononetin (2), mucronulatol (3), (3R)-calussequinone (5), (3R)-5'-methoxyvestitol (6), tectorigenin (7), biochanin A (8), tuberosin (9), calycosin (10), daidzein (11), and genistein (12), as well as a flavone, liquritigenin (4), were isolated as active principles responsible for the yeast α-glucosidase inhibitory activity from two leguminous plant extracts, i.e., the heartwood extract of Dalbergia odorifera and the roots extract of Pueraria thunbergiana. Each components (1-12) demonstrated a significantly potent inhibition on yeast α-glucosidase in a dose dependent manner when the p-nitrophenyl-α-D-glucopyranoside was used as a substrate in vitro. The concentration required for 50% enzyme inhibition (IC50) were calculated as 2.93 mM (1), 0.51 mM (2), 3.52 mM (7) 0.35 mM (8), 3.52 mM (9), 0.85 mM (11), and 0.15 mM (12) when that of reference drug acarbose was evaluated as 9.11 mM, in vitro. However, isoflavone glycosides, i.e., puerarin (13), daidzin (14), formononetin-7-O-β-glucopyranoside (15), and genistin (16), exhibited a relatively poor inhibitory activity on yeast α-glucosidase as compared with the corresponding isoflavone (2, 11, 12), respectively.
    Bioorg Med Chem . 2008 May 15;16(10):5434-5440
    Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship[Pubmed: 18440233]
    Several classes of flavonoids [flavanoids (1-10), flavonol (11), isoflavones (12-18), isoflavanones (19-22), isoflavans (23-26), chalcones (27-30), auronol (31), pterocarpans (32-37), 2-arylbenzofuran (38), and neoflavonoid (39)] and lignans (40-42) isolated from the MeOH extract of Brazilian red propolis were investigated for their cytotoxic activity against a panel of six different cancer cell lines including murine colon 26-L5 carcinoma, murine B16-BL6 melanoma, murine Lewis lung carcinoma, human lung A549 adenocarcinoma, human cervix HeLa adenocarcinoma, and human HT-1080 fibrosarcoma cell lines. Based on the observed results, structure-activity relationships were discussed. Among the tested compounds, 7-hydroxy-6-methoxyflavanone (3) exhibited the most potent activity against B16-BL6 (IC(50), 6.66microM), LLC (IC(50), 9.29microM), A549 (IC(50), 8.63microM), and HT-1080 (IC(50), 7.94microM) cancer cell lines, and mucronulatol (26) against LLC (IC(50), 8.38microM) and A549 (IC(50), 9.9microM) cancer cell lines. These activity data were comparable to those of the clinically used anticancer drugs, 5-fluorouracil and doxorubicin, against the tested cell lines, suggesting that 3 and 26 are the good candidates for future anticancer drug development.
    Pharm Biol . 2000;38(3):229-234.
    Bioactive flavonoids from the black locust tree, robinia pseudoacacia[Pubmed: 21214467]
    Five flavonoids, acacetin ( 1 ), secundiflorol I ( 2 ), mucronulatol ( 3 ), isomucronulatol ( 4 ), and isovestitol ( 5 ) were isolated, with the fractionation being guided by the brine shrimp lethality test (BST), from the ethanolic extract of the whole plant of Robinia pseudoacacia (Fabaceae). The structures of 1 - 5 were identified by spectral analyses. Compounds 2 - 5 are, for the first time, reported from this species. Corrections have been made for the previous literature assignments of the 13 C NMR resonances of compounds 1 - 3 . Bioactivities in BST and cytotoxicities against a panel of six solid human tumor cell lines were determined, and 1 was significantly cytotoxic in the prostate cell line (PC-3).
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.308 mL 16.5399 mL 33.0797 mL 66.1594 mL 82.6993 mL
    5 mM 0.6616 mL 3.308 mL 6.6159 mL 13.2319 mL 16.5399 mL
    10 mM 0.3308 mL 1.654 mL 3.308 mL 6.6159 mL 8.2699 mL
    50 mM 0.0662 mL 0.3308 mL 0.6616 mL 1.3232 mL 1.654 mL
    100 mM 0.0331 mL 0.1654 mL 0.3308 mL 0.6616 mL 0.827 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    鱼鳔槐氢醌; Colutehydroquinone CFN91022 181311-16-0 C18H20O6 = 332.35 10mg QQ客服:1457312923
    Haginin A; Haginin A CFN96550 74174-29-1 C17H16O5 = 300.31 5mg QQ客服:1457312923
    降香黄烃; Odoriflavene CFN91023 101153-41-7 C17H16O5 = 300.31 5mg QQ客服:1413575084
    Bidwillol A; Bidwillol A CFN97992 161099-42-9 C21H22O4 = 338.4 5mg QQ客服:1457312923
    Erythbidin A; Erythbidin A CFN96547 210050-83-2 C20H20O4 = 324.37 5mg QQ客服:1413575084
    光果甘草素; Glabrene CFN96402 60008-03-9 C20H18O4 = 322.4 5mg QQ客服:1457312923
    Dehydroglyasperin C; Dehydroglyasperin C CFN96483 199331-35-6 C21H22O5 = 354.4 5mg QQ客服:2159513211
    粗毛甘草素C; Glyasperin C CFN95065 142474-53-1 C21H24O5 = 356.4 5mg QQ客服:2056216494
    甘草西定; Licoricidin CFN96389 30508-27-1 C26H32O5 = 424.5 5mg QQ客服:1457312923
    甘草异黄烷甲; Licorisoflavan A CFN96372 129314-37-0 C27H34O5 = 438.6 5mg QQ客服:215959384

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产