Info: Read More
  • 中药标准品生产商,产品定制服务
  • 毛束草碱

    Trichodesmine

    毛束草碱
    产品编号 CFN00433
    CAS编号 548-90-3
    分子式 = 分子量 C18H27NO6 = 353.41
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Alkaloids
    植物来源 The herbs of Crotalaria rubiginosa Willd.
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    毛束草碱 CFN00433 548-90-3 1mg QQ客服:3257982914
    毛束草碱 CFN00433 548-90-3 5mg QQ客服:3257982914
    毛束草碱 CFN00433 548-90-3 10mg QQ客服:3257982914
    毛束草碱 CFN00433 548-90-3 20mg QQ客服:3257982914
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Florida A&M University (USA)
  • Heidelberg University (Germany)
  • Kyushu University (Japan)
  • Northeast Normal University Changchun (China)
  • Monash University Malaysia (Malaysia)
  • Institute of Tropical Disease Universitas Airlangga (Indonesia)
  • Harvard University (USA)
  • Charles Sturt University (Denmark)
  • Mahidol University (Thailand)
  • Medical University of Gdansk (Poland)
  • Amity University (India)
  • Istanbul University (Turkey)
  • Chiang Mai University (Thailand)
  • Copenhagen University (Denmark)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Asian Journal of Chemistry2018, 30(12):2699-2703
  • Appl Biol Chem2019, 62:46
  • Food Chem.2020, 327:126992.
  • Clin Exp Pharmacol Physiol.2020, doi: 10.1111
  • Korean J. Medicinal Crop Sci.2021, 29(1):45-50.
  • Korean J. Food Preserv. 2021, 28(6):846-856.
  • Antioxidants (Basel).2020, 9(2):E99
  • Acta Physiologiae Plantarum2016, 38:7
  • Plant Foods Hum Nutr.2020, 10.1007
  • Int J Mol Sci.2019, 20(9):E2244
  • Pak J Pharm Sci.2018, 31:311-315
  • J Cell Physiol.2020, 10.1002
  • Antioxidants (Basel).2021, 10(3):379.
  • J Nat Med.2020, 74(1):65-75
  • Plants (Basel).2021, 10(12):2795.
  • Pharmacognosy Journal.2022, 14,4,327-337.
  • Appl Microbiol Biotechnol.2016, 100(9):3965-77
  • Nutrients.2019, 11(4):E936
  • Nat Prod Communications2018, 10.1177
  • Molecules.2020, 25(9):2081.
  • Anal Biochem.2019, 569:10-15
  • Int J Mol Sci.2022, 23(21):12816.
  • Am J Chin Med.2023, 51(4):1019-1039.
  • ...
  • 生物活性
    Description: Trichodesmine has greater lethality and neurotoxicity than monocrotaline, because of the two structural characteristics:(a) steric hindrance at position 14 of dehydroTrichodesmine results in greater resistance to hydrolysis, allowing more to be released from the liver and to be delivered to the brain;(b) the larger isopropyl substituent at position 14 of dehydroTrichodesmine renders the molecule more lipophilic, leading to greater penetration of the brain.
    In vitro:
    Toxicol Appl Pharmacol. 1995 Aug;133(2):277-84.
    The comparative metabolism of the four pyrrolizidine alkaloids, seneciphylline, retrorsine, monocrotaline, and trichodesmine in the isolated, perfused rat liver.[Pubmed: 7645024]
    Despite their similarity in structure, pyrrolizidine alkaloids (PAs) vary in their LD50s and in the organs in which toxicity is expressed. We have examined whether there are differences in the metabolism of certain PAs that are associated with these quantitative and qualitative differences in toxicity.
    METHODS AND RESULTS:
    Isolated rat livers were perfused with one of four PAs (seneciphylline, retrorsine, monocrotaline, and trichodesmine) at 0.5 mM for 1 hr, and the pyrrolic metabolites determined that were released into perfusate and bile or bound in the liver. The proportion of the PA removed by the liver varied from 93% for retrorsine to 55% for trichodesmine. However, trichodesmine-perfused livers released the greatest amount of the dehydroalkaloid into the perfusate. These reactive pyrrolic metabolites appear to be largely responsible for the toxicity of PAs. Over the course of a 1-hr perfusion, dehydroalkaloid release varied fourfold among the PAs examined. Seneciphylline and retrorsine significantly increased bile flow. Highest concentrations of PAs in bile were achieved at 30-40 min perfusion. Conversion of dehydroalkaloid to the conjugate 7-glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (GSDHP) is a detoxification reaction. GSDHP release into bile varied from 80 nmol/g liver for trichodesmine to 880 nmol/g for retrorsine. Release of the less toxic hydrolytic product of dehydroalkaloids, 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine, was also determined. Bound pyrroles in liver are probably an indication of heptatoxicity. At the end of perfusion these varied from 55 nmol/g for monocrotaline to 195 nmol/g for retrorsine. The chemical form of the bound pyrroles is a 7-thioether conjugate of 6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine. No 7,9-dithio conjugate was detected, indicating that only monoalkylation has been found.
    CONCLUSIONS:
    These differences in metabolic pattern reflect differences in reactivity of the initially formed dehydroalkaloid and can account for the toxicological differences between the parent PAs.
    In vivo:
    Neurochem Res. 1996 Feb;21(2):141-6.
    Physicochemical and metabolic basis for the differing neurotoxicity of the pyrrolizidine alkaloids, trichodesmine and monocrotaline.[Pubmed: 9182239 ]

    METHODS AND RESULTS:
    Monocrotaline and Trichodesmine are structurally closely related pyrrolizidine alkaloids (PAs) exhibiting different extrahepatic toxicities, Trichodesmine being neurotoxic (LD(50) 57 mu mol/kg) and monocrotaline pneumotoxic (LD(50) 335 mu mol/kg). More dehydroTrichodesmine (468 nmol/g liver) than dehydromonocrotaline (116 nmol/g liver) was released from liver into perfusate on perfusion for 1 hr with 0.5 mM of the parent PA. DehydroTrichodesmine had a significantly longer aqueous half-life (5.4 sec) than that of dehydromonocrotaline (3.4 sec). In vivo, significantly higher levels of bound pyrroles were found in the brain 18 hr after injection of Trichodesmine (25 mg/kg; i.p.) than were seen following either an equal dose (25 mg/kg; i.p.) or an equitoxic dose (90 mg/kg; i.p.) of monocrotaline. Trichodesmine had a higher partition coefficient than monocrotaline for both chloroform and heptane, indicating its greater lipophilicity. The pK(a) of Trichodesmine (7.07) was only slightly higher than that of monocrotaline (pK(a¿ 6.83), suggesting that a difference in degree of ionization was not a major factor affecting the relative ability of the dehydroalkaloids to cross the blood-brain barrier.
    CONCLUSIONS:
    We conclude that the greater lethality and neurotoxicity of Trichodesmine compared to monocrotaline is due to two structural characteristics: (i) steric hindrance at position 14 of dehydroTrichodesmine results in greater resistance to hydrolysis, allowing more to be released from the liver and to be delivered to the brain; (ii) the larger isopropyl substituent at position 14 of dehydroTrichodesmine renders the molecule more lipophilic, leading to greater penetration of the brain.
    Toxicon. 1995 May;33(5):627-34.
    The effect of the pyrrolizidine alkaloids, monocrotaline and trichodesmine, on tissue pyrrole binding and glutathione metabolism in the rat.[Pubmed: 7660367]

    METHODS AND RESULTS:
    One day after in vivo administration of equitoxic doses of the hepatotoxic and pneumotoxic pyrrolizidine alkaloid, monocrotaline (65 mg/kg, i. p.) or the related hepatotoxic and neurotoxic alkaloid trichodesmine (15 mg/kg, i. p.) hepatic GSH levels are increased by more than 50%. These doses of alkaloids represent 60% of the LD50 values. Accompanying these changes in GSH levels is an increase in the overall rate of GSH synthesis in supernatants of alkaloid-exposed livers. The ability of the rat to metabolize the two alkaloids was shown by the appearance of tissuebound pyrrolic metabolites of pyrrolizidines in various organs.
    CONCLUSIONS:
    The levels of these metabolites appear to correlate with organ toxicity. For the hepatic and pneumotoxic alkaloid, monocrotaline, higher levels are found in liver (17 nmoles/g tissue) and lung (10 nmoles/g) than for trichodesmine (7 nmoles/g and 8 nmoles/g, respectively). For the neurotoxic alkaloid, trichodesmine, higher levels are found in brain (3.8 nmoles/g tissue) than for monocrotaline (1.7 nmoles/g tissue).
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.8296 mL 14.1479 mL 28.2957 mL 56.5915 mL 70.7394 mL
    5 mM 0.5659 mL 2.8296 mL 5.6591 mL 11.3183 mL 14.1479 mL
    10 mM 0.283 mL 1.4148 mL 2.8296 mL 5.6591 mL 7.0739 mL
    50 mM 0.0566 mL 0.283 mL 0.5659 mL 1.1318 mL 1.4148 mL
    100 mM 0.0283 mL 0.1415 mL 0.283 mL 0.5659 mL 0.7074 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    矮陀陀碱; Axillarine CFN00347 19637-66-2 C18H27NO7 = 369.41 5mg QQ客服:2056216494
    矮陀陀酰胺碱; Axillaridine CFN00348 23506-96-9 C18H27NO6 = 353.41 5mg QQ客服:1457312923
    Othonnine; Othonnine CFN00349 119565-25-2 C18H27NO6 = 353.41 5mg QQ客服:2056216494
    响铃豆碱; Croalbidine CFN00356 41714-30-1 C18H29NO7 = 371.43 5mg QQ客服:2056216494
    Grantaline; Grantaline CFN00371 83482-61-5 C18H25NO6 = 351.40 5mg QQ客服:3257982914
    17-Methylparsonsianidine; 17-Methylparsonsianidine CFN00381 135637-68-2 C23H35NO9 = 469.53 5mg QQ客服:1457312923
    Spiracine; Spiracine CFN00383 77156-24-2 C23H35NO10 = 485.53 5mg QQ客服:215959384
    Parsonsianidine; Parsonsianidine CFN00397 135601-81-9 C22H33NO9 = 455.50 5mg QQ客服:215959384
    Parsonsianine; Parsonsianine CFN00398 131683-36-8 C21H31NO9 = 441.48 5mg QQ客服:3257982914
    毛束草碱; Trichodesmine CFN00433 548-90-3 C18H27NO6 = 353.41 5mg QQ客服:2056216494

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产