Info: Read More
  • 中药标准品生产商,产品定制服务
  • 水杨酸

    Salicylic acid

    水杨酸
    产品编号 CFN93274
    CAS编号 69-72-7
    分子式 = 分子量 C7H6O3 = 138.12
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Phenols
    植物来源 The herbs of Myrica rubra
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    水杨酸 CFN93274 69-72-7 10mg QQ客服:1413575084
    水杨酸 CFN93274 69-72-7 20mg QQ客服:1413575084
    水杨酸 CFN93274 69-72-7 50mg QQ客服:1413575084
    水杨酸 CFN93274 69-72-7 100mg QQ客服:1413575084
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Shanghai Institute of Organic Chemistry (China)
  • Kyung Hee University (Korea)
  • University of Malaya (Malaysia)
  • Massachusetts General Hospital (USA)
  • Universitas islam negeri Jakarta (Indonesia)
  • Vin?a Institute of Nuclear Sciences (Serbia)
  • University of Stirling (United Kingdom)
  • Melbourne University (Australia)
  • Georgia Institute of Technology (USA)
  • University of Oslo (Norway)
  • Universite Libre de Bruxelles (Belgium)
  • Instituto Politécnico de Bragan?a (Portugal)
  • Wageningen University (Netherlands)
  • Tokyo Woman's Christian University (Japan)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Phytomedicine.2019, 65:153089
  • Molecules.2023, 28(19):6775.
  • J Biochem Mol Toxicol.2021, 35(5):e22731.
  • Food Chem.2020, 332:127412
  • Agronomy2020, 10(3),388.
  • Agriculture2022, 12(12), 2173.
  • University of Central Lancashire2017, 20472
  • Plant Physiol Biochem.2023, 201:107795.
  • Evidence-based Compl.&Alternative Med.2023, 5417813
  • Eur Rev Med Pharmacol Sci.2020, 24(9):5127-5139.
  • Cells.2022, 11(6):931.
  • Drug Dev Res.2022, 83(7):1673-1682.
  • Foods.2021, 10(6):1378.
  • Pharmaceuticals (Basel).2020, 13(10):302.
  • Front Immunol.2017, 8:1542
  • Int J Mol Sci.2019, 21(1):E265
  • Mol Cells.2018, 41(8):771-780
  • Front Microbiol.2022, 13:835463.
  • Braz J Biol.2023, 82:e266573.
  • Biomol Ther (Seoul).2019, 10.4062
  • Plant Direct.2021, 5(12):e372.
  • Pharm Biol.2022, 60(1):2040-2048.
  • Oncotarget.2017, 9(3):4161-4172
  • ...
  • 生物活性
    Description: Salicylic acid , a phenolic phytohormone, can alleviate the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain. Salicylic acid plays a key role in regulation of plant immune responses to different attackers.
    Targets: ROS | SOD
    In vitro:
    Physiol Plant. 2018 Jul 9.
    Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity.[Pubmed: 29984429]
    Greater crop losses can result from simultaneous exposure to a combination of drought, heat and salinity in the field. Salicylic acid (SA), a phenolic phytohormone, can affect a range of physiological and biochemical processes in plants and significantly impacts their resistance to these abiotic stresses. Despite numerous reports involving the positive effects of SA by applying each abiotic stress separately, the mechanism of SA-mediated adaptation to combined stresses remains elusive.
    METHODS AND RESULTS:
    This study, via a time-course analysis, investigated the role of SA on the roots of hulled and hulless (naked) barley (Hordeum vulgare L. 'Tarm' and 'Özen', respectively), which differed in salt tolerance, under the combined stress of drought, heat and salt. The combined stress caused marked reductions in root length and increases in proline content in both genotypes; however, Tarm exhibited better adaptation to the triple stress. Under the first 24 h of stress, superoxide dismutase (SOD; EC.1.15.1.1) and peroxidase (POX; EC.1.11.1.7) activity in the Tarm roots increased remarkably, while decreasing in the Özen roots. Furthermore, the Tarm roots showed higher catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) activity than the Özen during the combined stresses. The sensitivity of hulless barley roots may be related to decreasing SOD, POX, CAT and GR activity under stress. Over 72 h of stress, the SA pretreatment improved the APX and GR activity in Tarm and that of POX and CAT in Özen, demonstrating that exogenously applied SA regulates antioxidant defense enzymes in order to detoxify ROS. The results of this study suggest that SA treatment may improve the triple-stress combination tolerance in hulled and hulless barley cultivars by increasing the level of antioxidant enzyme activity and promoting the accumulation of proline.
    CONCLUSIONS:
    Thus, SA alleviated the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain.
    AoB Plants. 2018 May 16;10(3):ply031.
    Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots.[Pubmed: 29977487 ]
    Phytohormones such as jasmonic acid (JA), Salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) play a key role in regulation of plant immune responses to different attackers. Extensive research over recent years has led to the identification of molecular markers for specific hormonal-regulated defence pathways. However, most of our current knowledge on the regulation of plant immunity derives from studies focused on above-ground organs, mainly on the model plant Arabidopsis thaliana. Therefore, it is unclear whether the paradigms based on experiments on above-ground organs are entirely transferable to roots.
    METHODS AND RESULTS:
    Here, we used the non-model plant Brassica rapa to study the regulation dynamics of hormonal-related marker genes in both roots and shoots. These markers were identified in Arabidopsis shoots after elicitation of the JA-, SA-, ET- or ABA-signalling pathways, and are commonly used to study induced responses. We assessed whether the regulation of those genes by hormonal elicitation differs between roots and shoots. To discern whether the differences in marker gene expression between roots and shoots are related to differences in hormone production or to differential responsiveness, we also measured actual hormone content in the treated tissue after elicitation. Our results show that some of the widely used markers did not show specific responsiveness to single hormone applications in B. rapa. We further found that hormonal elicitation led to different response patterns of the molecular markers in shoots and roots.
    CONCLUSIONS:
    Our results suggest that the regulation of some hormonal-related marker genes in B. rapa is organ specific and differs from the Arabidopsis-derived paradigms.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 7.2401 mL 36.2004 mL 72.4008 mL 144.8016 mL 181.002 mL
    5 mM 1.448 mL 7.2401 mL 14.4802 mL 28.9603 mL 36.2004 mL
    10 mM 0.724 mL 3.62 mL 7.2401 mL 14.4802 mL 18.1002 mL
    50 mM 0.1448 mL 0.724 mL 1.448 mL 2.896 mL 3.62 mL
    100 mM 0.0724 mL 0.362 mL 0.724 mL 1.448 mL 1.81 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    红果酸; Eucomic acid CFN95364 42151-32-6 C11H12O6 = 240.2 5mg QQ客服:1457312923
    番石榴酸; Piscidic acid CFN91622 469-65-8 C11H12O7 = 256.21 5mg QQ客服:2056216494
    升麻酸F; Cimicifugic acid F CFN70314 220618-91-7 C21H20O10 = 432.4 5mg QQ客服:2056216494
    升麻酸B; Cimicifugic acid B CFN70303 205114-66-5 C21H20O11 = 448.4 5mg QQ客服:1457312923
    巴利森苷E; Parishin E CFN93115 952068-57-4 C19H24O13 = 460.4 20mg QQ客服:215959384
    巴利森苷G; Parishin G CFN95324 952283-93-1 C19H24O13 = 460.4 10mg QQ客服:1413575084
    巴利森苷B; Parishin B CFN93113 174972-79-3 C32H40O19 = 728.7 20mg QQ客服:215959384
    巴利森苷C; Parishin C CFN93114 174972-80-6 C32H40O19 = 728.7 20mg QQ客服:215959384
    巴利森苷A; Parishin A CFN93112 62499-28-9 C45H56O25 = 996.9 20mg QQ客服:2159513211
    1,4-二[4-(葡萄糖氧)苄基]-2-异丁基苹果酸酯; Militarine CFN90409 58139-23-4 C34H46O17 = 726.73 20mg QQ客服:1457312923

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产